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Abstract
In this paper, we study the interplay of a totally asymmetric simple exclusion
process (TASEP) with a shortcut in its bulk under open boundary conditions.
Two different models are introduced: (i) model A for molecular motor motion,
and (ii) model B for vehicular traffic. The phase diagrams and density profiles
of both models are studied. It is found that although the phase diagrams of both
models can be classified into three regions, the phases corresponding to these
regions and the phase boundaries between these regions are quite different in
these two models. Moreover, the approximate stationary-state solutions of
model A have been carried out and it is shown that the analytical results are in
good agreement with the results of Monte Carlo simulations.

PACS numbers: 05.70.Ln, 02.50.Ey, 05.60.Cd

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One-dimensional asymmetric simple exclusion processes (ASEPs), which represent one of
the basic models in studying the rich behavior of complex systems held far from equilibrium,
have been intensively studied for decades (see reviews in [1, 2]). ASEP was first introduced in
[3] for ribosome motion and then used to model a wide variety of physical processes including
surface growth [4, 5], traffic flow [6], etc.

ASEPs are discrete non-equilibrium models that describe the stochastic dynamics of
multi-particle transport along one-dimensional lattices. Each lattice site can be either empty
or occupied by a single particle. Particles interact only through hard core exclusion potential.
The simplest limit of an ASEP is that particles can only move in one direction. This is
called the totally asymmetric simple exclusion processes (TASEP). Exact analytical solutions
for stationary states exist under periodic [7, 8] and open boundary conditions [9, 10] and
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different update schemes [11–13]. These studies contribute to better understanding of general
mechanisms leading to phase transitions in the systems that are out of equilibrium.

Under open boundary conditions, the solutions yield phase diagrams with three phases
[9, 10]. At small values of injection rates α < 0.5 and α < β, the system is found in a
low-density entry-limited phase where

ρ1 = α ρL = α(1 − α)

β
(1)

J = α(1 − α) ρbulk = α,

where ρ1, ρL and ρbulk are the densities at the entrance, exit and the bulk of the lattice far away
from the boundaries, respectively. J denotes the flux.

At small values of extraction rates β < 0.5 and β < α, the system is in a high-density
exit-limited phase with

ρ1 = 1 − β(1 − β)

α
ρL = 1 − β

J = β(1 − β) ρbulk = 1 − β.
(2)

Moreover, at large values of the injection (α � 0.5) and extraction (β � 0.5) rates the
system is in a maximal current phase with

ρ1 = 1 − 1

4α
ρL = 1

4β

J = 1

4
ρbulk = 1

2
.

(3)

A number of different extensions of ASEPs have been proposed, including particles
occupying more than one lattice site [14, 15], defects in the bulk [16–20], particle moving in
system with periodically varying sitewise disorder [21], combination of random particles
attachment and detachment [22], two-lane extensions [23–28], allowance of long-range
hopping [29], and so on.

In 2004, Brankov et al [30] and Pronina and Kolomeisky [31] in 2005 investigated a
problem of ASEP with double-chain section in the middle, where they assumed that the
particles choose one of the two chains with an equal probability 0.5 and that the lengths of
the two chains equal to each other. However, asymmetric conditions that the particles choose
two chains with different probabilities and the lengths of the two chains differ from each other
have not been considered yet.

In this paper, we investigated an extension of a TASEP, in which a shortcut is presented
in the bulk, i.e. the length of one chain (shortcut) is zero. The study may be relevant for both
molecular motor motion and vehicular traffic, because the filament on which the motor moves
may be twisted as shown in figure 1(a) so that a motor may have a chance to jump directly
from k1 to k2 with probability q. In vehicular traffic, some drivers may know some shortcuts
between two locations while others do not.

Based on these assumptions, we study two different models in this paper. Model A
simulates the behavior of molecular motor motion in the presence of a shortcut, while model
B simulates the vehicular traffic with a shortcut. The phase diagram and density profiles of
both models are analyzed in detail.

The paper is organized as follows. Section 2 introduces the rules of these two models.
Simulation and analytic results are presented in section 3. Finally, conclusion is given in
section 4.
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(a)

(b)

Figure 1. (a) The filament of molecular motor motion or lane of vehicular traffic including a
shortcut. (b) One-dimensional lattice with a shortcut in its bulk abstracted from (a).

2. Rules of two models

In this section, the rules of these two different models are introduced. The sketch of lattices
is shown in figure 1(b). One can see that the lattices are divided into three segments by sites
k1 and k2. Segments I, II, III start from sites 1, k1 + 1, k2 and end in sites k1, k2 − 1, L,
respectively.

In model A, all the particles traveling in the lattices are identical to each other. The
random update rules are adopted. A site i (1 � i � L) is chosen randomly. In an infinitesimal
time interval dt, if i = 1, a particle is inserted with probability α dt , provided the site is empty.
If site 1 is occupied, the particle moves into site 2 with probability dt provided site 2 is empty.
If i = L and site L is not empty, the particle will leave the system with probability β dt . If
1 < i < k1 or k1 < i < L and site i is occupied, the particle in site i will move into site i + 1
with probability dt provided site i + 1 is empty. However, if i = k1 and site k1 is occupied by
a particle, we have the following:

• If both sites k1 + 1 and k2 are empty, then the particle in site k1 moves into site k2 with
probability q dt and moves into site k1 + 1 with probability (1 − q) dt .

• If site k2 is empty and site k1 + 1 is occupied, then the particle in site k1 moves into site
k2 with probability q dt .

• If site k2 is occupied and site k1 + 1 is empty, then the particle in site k1 moves into site
k1 + 1 with probability dt .

• If both sites k1 + 1 and k2 are occupied, then the particle does not move.

Note model A reduces to an original TASEP model in the limit q = 0.
Different from model A, there are two types of particles in model B. Some particles,

denoted by type 1, are aware of the existence of the shortcut and the others, denoted by type
2, do not know this shortcut or do not want to use the shortcut. The random-updating rules of
model B differ from that of model A only on sites 1 and k1.
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Figure 2. Phase diagram of model A related to α and β.

In an infinitesimal time interval dt , for site 1, if it is empty, a particle is inserted with
probability α dt . The inserted particle is of type 1 with probability q and of type 2 with
probability 1 − q. For site k1, if it is occupied by a particle of type 1, the particle will move
into site k2 through the shortcut with probability dt provided site k2 is empty; otherwise the
particle will stop at site k1 until site k2 is empty; if site k1 is occupied by a particle of type
2, the particle will move forward into site k1 + 1 with probability dt provided site k1 + 1 is
empty, otherwise the particle will stop at site k1 until site k1 + 1 is empty. Particles of type 1
will always use the shortcut and particles of type 2 never pass through the shortcut. Note that
when q = 0, the system reduces to the original TASEP with system length L; When q = 1,
the system reduces to the original TASEP with system length 2

3L and segment II is excluded
from the system.

3. Results of model A

In the simulations, the system size is set to L = 3000 unless otherwise mentioned. We set
k1 = L/3 and k2 = 2L/3 + 1. In other words, the shortcut starts from site L/3 + 1 and ends
at site 2L/3.

In this section, we carry out the simulations of model A. A phase diagram related to α and
β is shown in figure 2. Similar to the phase diagram of an original TASEP [9, 10], the phase
diagram of model A can be classified into three regions. When α < 0.5 and α < β, the three
segments of the system are all in the low-density phase (LLL), as shown in figure 3(a), where
we see the density profiles with the parameters α = 0.3, β = 0.8 and q = 0.1, 0.3, 0.5, 0.7
and 0.9. The bulk densities of segments I and III are equal and both equal to α. The shortcut
only affects the density of segment II, which is lower than α because some particles pass
through the shortcut directly. Consequently, with increase of q, the density of segment II
decreases.

When β < 0.5 and α > β, all three segments of the system are in the high-density phase
(HHH). The density profiles with parameters α = 0.8, β = 0.3 and q = 0.1, 0.3, 0.5, 0.7 and
0.9 are shown in figure 3(b). The densities of segments I and III both equal to 1 − β and
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(a) (b)

(c)

Figure 3. Density profiles of the simulation results of model A corresponding to different phases
with q = 0.1, 0.3, 0.5, 0.7 and 0.9. (a) α = 0.3 and β = 0.8; (b) α = 0.8 and β = 0.3;
(c) α = 0.8 and β = 0.8.

the density of segment II is larger than 1 − β. The density of segment II increases with the
increase of q.

When α � 0.5 and β � 0.5, segment I, II and III are in the maximal current phase,
high-density phase and maximal current phase (MHM), respectively. Figure 3(c) shows the
density profiles with parameters α = 0.8, β = 0.8 and q = 0.1, 0.3, 0.5, 0.7 and 0.9.

Different from the second-order phase transition between the low-density phase and
maximum flow phase in the original phase diagram of a TASEP, the transition between the
LLL and MHM phases in model A is of first order if we take the bulk density in segment II
as an order parameter. The phase transition between the HHH and MHM phases is of second
order, which are the same as the situations in the original TASEP phase diagram.

3.1. Mean field analysis

In this subsection, we present the approximate stationary solutions of model A by using the
mean field method proposed in [19]. As illustrated in figure 1(b), three segments are divided
and each segment can be regarded as a lattice of a separated TASEP. Moreover, the injection
rate and extraction rate of segment I are denoted by αeff1 and βeff1, αeff2 and βeff2 for segment
II and αeff3 and βeff3 for segment III, respectively. Their values are as follows:

αeff1 = α βeff1 = 1 − ρk1+1 + q · ρk1+1 · (
1 − ρk2

)

αeff2 = ρk1

[
1 − q

(
1 − ρk2

)]
βeff2 = 1 − ρk2

(4)
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αeff3 = qρk1 + ρk2−1 βeff3 = β,

Jsc = qρk1

(
1 − ρk2

)

where ρi represents the stationary value of the density of site i (i = 1, 2, . . . , L). We denote
the flux of segments I, II and III, and shortcut as J1, J2, J3 and Jsc respectively. Due to particle
conservation of the system, we have

J1 = J2 + Jsc = J3. (5)

Next we demonstrate that segments I and III should be in the same phase if α �= β. Due
to particle conservation, it is impossible that one of them is in maximum-current phase but the
other is not. Therefore, we only need to demonstrate that the following four possibilities do
not exist: (L, L, H), (L, H, H), (H, L, L) and (H, H, L). Here (X, Y, Z) denotes that segment I,
II and III is in the X phase, Y phase and Z phase, respectively.

Suppose the system is in (L, L, H) or (L, H, H), this implies α < 0.5, J1 = α(1 −α), β <

0.5 and J3 = β(1 − β). Together with equation (5) and α �= β, we obtain α + β = 1, which is
contradicted with α < 0.5 and β < 0.5. Thus, the phase (L, L, H) or (L, H, H) cannot exist.

Suppose the system is in (H, L, L), then we have 1 − ρk1 = ρk2 due to J1 = J3. From
equation (5), we obtain ρk1

(
1 − ρk1

) = αeff2(1 − αeff2) + qρk1

(
1 − ρk2

)
, from which we can

obtain ρk1 = 0. Thus, the system cannot be in (H, L, L).
If the system is in (H, H, L), then J2 = βeff2(1 − βeff2) = ρk2

(
1 − ρk2

) = J3, which is
contradicted with J3 > J2 when q �= 0. Thus, the system cannot be in (H, H, L) either.

Therefore, the same as the original TASEP, three different situations for segments I and
III can be classified.

When α < 0.5 and α < β, both segments I and III are in the low-density phase. Therefore,

J2 = αeff2
(
1 − ρk1+1

) = ρk2−1βeff2

J1 = J3 = α(1 − α) (6)

αeff3 = ρk2 = α.

If we assume that segment II is in the high-density phase, then ρk2−1 = 1 − βeff2 = ρk2 .
From equation (6), we obtain J2 = α(1 − α) = J1 = J3, which is unreasonable when q �= 0.
Thus, segment II cannot be in the high-density phase. It is easy to understand that segment II
cannot be in the maximal current phase. Therefore, segment II can only be in the low-density
phase. Thus,

ρk1+1 = αeff1. (7)

From equations (1), (4)–(7), we can obtain approximate solutions under the conditions of
α < 0.5 and α < β:

ρk1 = 1 −
√

1 − 4α(1 − α)[1 − q(1 − α)]2

2[1 − q(1 − α)]2

ρk1+1 = αeff2 = ρk1(1 − q + qα)

βeff1 = α(1 − α)

ρk1

βeff2 = 1 − α

αeff3 = q(1 − α)ρk1 .

(8)

When β < 0.5 and α > β, segments I and III are both corresponding to the high-density
phase. Then, we can obtain ρk1 = 1 − β. From flux conversation, we can obtain that

(
qρk1 + ρk2−1

)(
1 − ρk2

) = β(1 − β) (9)
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thus,

ρk2−1 = β(1 − β)

1 − ρk2

− q(1 − β). (10)

Similarly, segment II cannot be in the maximal-flow phase because we can obtain Jsc < 0
from J1 = J2 + Jsc. If we assume that segment II is in the low-density phase, according to
equations (1) and (4), we can obtain the mean density of the exiting site of segment II,

ρk2−1 = αeff2(1 − αeff2)

βeff2

= (1 − β)
[
ρk2 +

(
1 − ρk2

)
(1 − q)

]{
1 − (1 − β)

[
ρk2 +

(
1 − ρk2

)
(1 − q)

]}

1 − ρk2

. (11)

From equations (10) and (11), we can obtain the equation
(
1 + q + qρk2

)2 = 1, (12)

which has no solutions when q > 0 and ρk2 > 0. Therefore, segment II cannot be in the
low-density phase.

Segment II can only be in the high-density phase. Then, ρk2−1 = 1 − βeff2 = ρk2 . From
equation (9), we can obtain

ρ2
k2

− [1 − q(1 − β)]ρk2 + (β − q)(1 − β) = 0, (13)

thus

ρk2 = 1 − q(1 − β) +
√

[1 − q(1 − β)]2 − 4(β − q)(1 − β)

2
βeff1 = β

αeff2 = ρk1

[
1 − q

(
1 − ρk2

)] = (1 − β)
[
1 − q

(
1 − ρk2

)]
(14)

βeff2 = 1 − ρk2 = 1 + q(1 − β) −
√

[1 − q(1 − β)]2 − 4(β − q)(1 − β)

2

αeff3 = ρk2 = 1 − q(1 − β) +
√

[1 − q(1 − β)]2 − 4(β − q)(1 − β)

2
.

When α � 0.5 and β � 0.5, segments I and III are in the maximal current phase. It is
clear that segment II cannot be in the maximal current phase due to Jsc > 0. If we assume
that segment II is in the low-density phase, then the bulk density in segment II is ρk1+1 and we
have

ρk1+1
(
1 − ρk1+1

) = ρk2−1
(
1 − ρk2

)
. (15)

On the other hand, the density profile in segment II has an increasing tail near the right end due
to high density at site k2. Therefore, we believe that the density on site k2 −1 is approximately
the same as that on site k2, i.e.,

ρk2−1 ≈ ρk2 . (16)

It is obvious that the sum of the flow rate of segment II and that of the shortcut is 0.25, i.e.,

qρk1

(
1 − ρk2

)
+ qρk1ρk2

(
1 − ρk1+1

)
+ (1 − q)ρk1

(
1 − ρk1+1

) = 0.25. (17)

Finally, we have

qρk1ρk2

(
1 − ρk1+1

)
+ (1 − q)ρk1

(
1 − ρk1+1

) = ρk2−1
(
1 − ρk2

)
. (18)

It is difficult to express the solutions of equations (15)–(18) analytically. Nevertheless, it is
found numerically that reasonable solutions do not exist. Therefore, segment II cannot be in
the low-density phase.
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(a) (b)

(c)

Figure 4. Comparison of approximate solutions and Monte Carlo simulation results for model A
corresponding to different phases. (a) α = 0.3, β = 0.8 and q = 0.5; (b) α = 0.8, β = 0.3 and
q = 0.5; (c) α = 0.8, β = 0.8 and q = 0.5.

When segment II is in the high-density phase, the bulk density in segment II is ρk2−1 and
we have

ρk2−1
(
1 − ρk2−1

) = ρk2−1
(
1 − ρk2

)
. (19)

The density profile in segment II has an decreasing tail near the left end due to small density
at site k1. Similarly, we believe that the density on site k1 + 1 is approximately the same as
that on site k1 (which is also supported by numerical simulations), i.e.,

ρk1 ≈ ρk1+1. (20)

It is also difficult to express the solutions of equations (17)–(20) analytically, but the
numerical solutions can be obtained.

The density profiles of Monte Carlo simulations and our approximate solutions have been
compared in figure 4. It is shown that our approximate solutions are in good agreement with
the Monte Carlo simulation results.

3.2. Phase boundary

This subsection focuses on the phase boundary between LLL and HHH in model A.
Figure 5 shows the density profiles at the phase boundary with parameters α = β = 0.25, q =
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Figure 5. Density profiles of the simulation results of model A at the phase boundary with
parameters L = 300, α = β = 0.25, q = 0.1, 0.3, 0.5, 0.7 and 0.9.

(a) (b)

Figure 6. Fluxes of segment I and II and shortcut of model A near the phase boundary with
parameters α = β = 0.25, q = 0.5. (a) versus α with β = 0.25; (b) versus β with α = 0.25.

0.1, 0.3, 0.5, 0.7 and 0.9. It is found that the slopes of segment I and III approximately equal
to each other and they increase with the decrease of q. In contrast, the slope of segment II
decreases with the increase of q.

Figures 6(a) and (b) show J1, J2 and Jsc versus α with β fixed and versus β with α

fixed, respectively. As expected, J1 is continuous when crossing the phase boundary α = β.
However, it is interesting to find out J2 is discontinuous when crossing the phase boundary.
This is also supported by mean field approximation (see equations (2), (8) and (14)). The
result is qualitatively different from the results in [30], in which the flux on the middle chains
is continuous when crossing the corresponding phase boundary. Furthermore, it is found that
J2 corresponding to α = β approximately equals to that corresponding to α > β, provided β

does not change. This result is obviously related to the asymmetric hopping of particles at site
k1, although presently we do not know the exact reason, which needs to be further investigated
in future work.
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Given this fact, J2 corresponding to α = β could be calculated by equations (2) and (14).
As a result, the density profile corresponding to α = β could be calculated by the domain wall
approach proposed in [31] as follows.

A position of the domain wall in the system is denoted by x: x = i
L

where i is the site
index and L is the length of the system. Therefore, the cases of 0 < x � 1/3, 1/3 < x � 2/3
and 2/3 < x � 1 describe segments I, II and III, respectively. The moving rate of the domain
wall in segments I, II and III are u1, u2 and u3, which can be determined by utilizing the
expression below:

uk = Jk

ρk
+ − ρk−

, for k = 1, 2, 3, (21)

where

ρ1
− = α, ρ1

+ = 1 − α,

ρ2
− = 1 − √

1 − 4J2

2
, ρ2

+ = 1 +
√

1 − 4J2

2
, (22)

ρ3
− = β, ρ3

+ = 1 − β.

We introduce three probabilities P1, P2 and P3 of finding the domain wall at any position
in segments I, II and III. These probabilities are obviously normalized:

P1 + P2 + P3 = 1. (23)

Then, at the two junctions we have

u1P1

L/3

J2

J1
= u2P2

L/3
= u3P3

L/3

J2

J1
. (24)

By combining the last two equations we can solve the value of P1, P2 and P3. Then we
can determine the probabilities of the domain wall at any position less than a certain value of
x:

Prob(xDW < x) = P1x

1/3
, 0 < x � 1/3

Prob(xDW < x) = P1 +
P2(x − 1/3)

1/3
, 1/3 < x � 2/3 (25)

Prob(xDW < x) = P1 + P2 +
P3(x − 2/3)

1/3
, 2/3 < x � 1.

Finally, the density at any position can be calculated as

ρ(x) = ρk
− Prob(xDW > x) + ρk

+ Prob(xDW < x). (26)

Substituting the value of α = 0.25, β = 0.25, q = 0.5J1 = 0.1875 and J2 = 0.13 into
the equations above, we can obtain the analytic results of density profiles at the phase boundary
α = β = 0.25:

ρ(x) = 0.25 + 0.4425x, 0 < x � 1/3

ρ(x) = 0.85x + 0.0745, 1/3 < x � 2/3

ρ(x) = 0.4425x + 0.3075, 2/3 < x � 1.

(27)

Figure 7 shows the comparison of simulation results and the analytic results. It is shown
that the simulation results are in good agreement with analytic results in segments I and III
and they only slightly deviate from the analytic results in segment II.
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Figure 7. Comparison of results of the domain wall approach and that of simulation at the phase
boundary α = β = 0.25 and q = 0.5.

The slope of segment I increases with the decrease of q can also be explained with the
approach. From equations (21)–(26), we can obtain the slope of segments I and II, denoted
by s1 and s2:

s1 = 3

2 + 2
√

1 − 4J2
s2 = 3(1 − 4J2)

1 +
√

1 − 4J2
. (28)

When q decreases, J2 increases. As a result, s1 increases and s2 decreases corresponding to
the parameters used.

4. Results of model B

The simulations of model B are described in this section. The phase diagram of model B is
shown in figure 8. One can see that three regions can be classified. Region I corresponds to
the LLL phase: all three segments are in the low-density phase. The corresponding density
profiles with α = 0.3, β = 0.8 and different values of q are illustrated in figure 9(a). We
can see that the bulk densities of both segments I and III are equal to α and the bulk density
of segment II decreases with the increase of q. Moreover, comparing with the case in model
A, the bulk density of segment II in model B is smaller under the same parameters set. It is
because the particles of type 1 do not enter segment II at all in model B.

Region II corresponds to the MLM phase of the system where segments I, II and
III correspond to the maximal current phase, low-density phase, maximal current phase,
respectively. The corresponding density profiles are shown in figure 9(b). Comparing with
the case in model A, the maximal current phases in segments I and III are different. Instead
of 0.5, the bulk densities of segments I and III are 1 − λ and λ respectively and the maximal
current equals to λ(1 − λ) instead of 1

4 . Here, λ < 0.5 is a parameter dependent of q and it
decreases with the increase of q. In particular, segment II is in a low-density phase, which is
different from the case in model A where segment II is in the high-density phase.

The phase in region III depends on q. When q is larger than a threshold qc ≈ 0.27,
region III corresponds to the HLH phase: segments I and III are in the high-density phase but
segment II is in the low-density phase. See, for example, the density profiles corresponding



12362 Y-M Yuan et al

(a) (b)

Figure 8. Phase diagrams of model B related to α and β. (a) q = 0.5 > qc; (b) q = 0.1 < qc .

(a) (b)

(c) (d )

Figure 9. Density profiles of simulation results for model B corresponding to different phases with
q = 0.1, 0.3, 0.5, 0.7 and 0.9. (a) α = 0.3 and β = 0.8; (b) α = 0.8 and β = 0.8; (c) α = 0.8
and β = 0.3; (d) α = 0.25 and β = 0.25.

to q = 0.3, 0.5, 0.7 and 0.9 in figure 9(c). When q < qc, region III corresponds to the HHH
phase: all three segments are in the high-density phase. See, for example, the density profiles
corresponding to q = 0.1 in figure 9(c).

We would like to point out all the boundaries in the phase diagram corresponding to a
first-order transition. From the LLL phase to the MLM phase, the bulk density in segment I
is discontinuous. From the LLL phase to the HLH phase, there is a jump of bulk densities
in segments I and III. From the MLM phase to the HHH phase, a jump of bulk densities
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in segments II and III occurs. From the MLM phase to the HLH phase, the bulk density is
discontinuous in segment III.

Finally we discuss the phase boundary α = β. The simulations show that the density
profile in segments I and III is always linear. The density profile in segment II is linear if
q < qc. Nevertheless, if q > qc, the LD phase appears in segment II. Furthermore, different
from model A, the flux J2 is continuous when crossing the phase boundary α = β.

The mean field analysis for the critical value qc and the value of λ at a given q in model
B are not so easy to be obtained because there are two types of particles involved. This needs
to be further investigated in the future.

5. Conclusions

In this paper, we have presented two different models to investigate the interplay of a totally
asymmetric simple exclusion process with a shortcut in its bulk under open boundaries. The
phase diagrams of both models can be classified into three regions. However, there are many
differences between them: (i) the three regions in model A correspond to the LLL, HHH and
MHM phases respectively, while in model B, they are the LLL, HLH or HHH, MLM phases
respectively; (ii) the phase boundaries in model A are independent of the value of q, while
in model B, they depend on the value of q; (iii) in model A, the phase transition between the
LLL and MHM phases are of first order, the phase transition between the HHH and MHM
phases is of second order and the bulk densities of all the three segments are linear at the
phase boundary α = β. Moreover, the flux of segment II is discontinuous when crossing
the boundary. However, in model B, all the phase transitions are of first order. In addition,
at the phase boundary α = β < λ, the bulk densities of segments I and III are linearly
independent of q and the bulk density of segment II is linear when q < qc and is in the LD
phase when q > qc. Furthermore, we have obtained the analytical results of model A by using
a simple mean-field approximation. It is found the results of the approximate solutions and
Monte Carlo simulations are in good agreement.

In our future work, an analytical investigation on model B is needed. Also, the effect of
multi-shortcuts will be investigated.
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